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can invade surrounding healthy breast tissue and reach 
axillary lymph nodes, thus obtaining a door for access 
to other parts of the body. In addition to histological 
classification, there are breast cancer subtypes de-
pending on genetic alterations, gene differential ex-
pression and the type of leukocytic infiltrate, among 
other factors6. Together, these factors determine each 
tumor’s biological behavior and treatment response7.

Breast cancer treatment depends on the type of can-
cer and the degree of dissemination8. Current treat-
ments are highly aggressive for patients and consist in 
surgical removal of the tumor and adjuvant therapies 
such as radiotherapy, chemotherapy, immunotherapy 
and hormone therapy. Their efficacy largely depends 
on an early diagnosis enabling small tumors to be elim-
inated by surgical or chemical methods; however, even 
at early stages, treatment cannot warrant tumor cell 
complete elimination, which results in a high rate of 
disease recurrence. The risk of breast cancer relapse 
depends both on tumor extent and biological 
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Abstract
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Introduction

Cancer is a disease that affects a large number of 
people and constitutes one of the main causes of death 
in the entire world. Most important neoplasms include 
breast cancer, which is the malignancy with the highest 
incidence and mortality in women worldwide1. In Mex-
ico, breast cancer is the malignancy with the highest 
incidence and mortality2. Breast cancer most common 
type is ductal carcinoma, which originates in cells of 
the galactophorous ducts that carry milk from the lob-
ules to the nipple. Breast cancer can also originate in 
cells of the lobules (lobular carcinoma), which are the 
milk-producing glands. Less often, breast cancer can 
originate in stromal tissues, including fatty and fibrous 
connective tissues of the breast3. Inflammatory carci-
noma is an infrequent breast cancer variant that is 
highly aggressive, has a 5-year survival rate of 40% 
and affects especially young women4,5. Cancer cells 

Correspondence:
Alexander Pedroza-González

Av. de los Barrios, 1

Col. Los Reyes Iztacala 

C.P. 54090, Tlalnepantla 

Edo. de México, México 

E-mail: alexander_pg@yahoo.com.mx

Gac Med Mex. 2017;153:210-7 

Contents available at PubMed 

www.anmm.org.mx

Date of modified version reception: 01-03-2016 

Date of acceptance: 09-05-2016



G.S. García-Romo, et al.: Main immunoregulatory mechanisms that favor breast cancer development

211

expressed in approximately 25% of primary tumors. 
HER2 is a type 1 transmembrane oncoprotein that was 
initially described in breast cancer pathogenesis in 
198715. HER2 expression is associated with poor prog-
nosis, since this kind of tumors are of rapid evolution 
and dissemination. Currently, monoclonal antibodies 
against HER2 have been generated, such as trastu-
zumab, which is a humanized monoclonal antibody that 
recognizes HER2 extracellular domain and that was 
approved by the US Food and Drug Administration in 
199816. Its clinical use has improved the survival of 
patients with breast cancer at early and advanced stag-
es17. Trastuzumab’s mechanism of action consists in 
preventing HER2 receptor dimerization, thereby block-
ing cell proliferation-promoting protein kinases signal-
ing and activation. However, nearly 15% of treated pa-
tients relapse in a 12-month period10,18. The mechanism 
of resistance to trastuzumab is HER2 alternate di-
merization with other proteins of the same family, such 
as HER319. In view of such treatment resistance, new 
agents have been developed, with pertuzumab stand-
ing out, which is another anti-HER2 humanized mono-
clonal antibody that recognizes a different epitope than 
that recognized by trastuzumab. Pertuzumab prevents 
HER2 dimerization with HER320. Pertuzumab combina-
tion with trastuzumab and chemotherapy with docetaxel 
has demonstrated higher efficacy in the treatment of 
breast cancer than either agent separately with 
docetaxel18,21. In addition, other anti-HER2 compounds 
have been developed, such as lapatinib and the tras-
tuzumab-emtansine conjugate, which are mainly used 
as second-line treatment in case of resistance to trastu-
zumab in combination with docetaxel22,23. In addition to 
blocking HER2 dimerization, these antibodies activate 
antibody-dependent cytotoxicity24. Therapeutic success 
of these monoclonal antibodies is also due to the fact 
that patients with HER2-overexpressing tumors don’t 
possess multiple immunosuppression mechanisms, as 
it has been observed in patients with HER2-negative 
tumors25,26. Ertumaxomab is a bivalent antibody that 
recognizes HER2 and CD3, which enables tumor-infil-
trating lymphocytes activation, by means of which it 
might have higher therapeutic effect; currently, it is being 
assessed to find the maximum dose and clinical efficacy 
(ClinicalTrials.gov, NCT01569412)26,27. 

In conclusion, the use of TAA-targeted monoclonal 
antibodies is a highly promising therapeutic option, but 
it depends on specific expression of these antigens in 
tumor cells, as well as on the absence of immunosup-
pressant mechanisms that might inactivate their anti-
body-dependent cytotoxicity effect.

characteristics. Lymph node involvement status is one 
of the most widely used prognostic factors, with a clear 
correlation existing between the number of lymph 
nodes involved and the risk for relapse. Recurrent can-
cer can appear at the same site (local recurrence), in 
a nearby area such as the chest wall and infraclavicular 
or supraclavicular lymph nodes (regional recurrence) or 
at distant sites such as the liver, the lung or the brain 
(distant recurrence)9. Unfortunately, recurrent cancer is 
highly aggressive and develops rapidly, which largely 
limits treatment options and efficacy. One treatment 
alternative that has been investigated in recent years 
is immunotherapy, but immune tolerance mechanisms 
that normally protect against the development of auto-
immune diseases have been observed to be able to be 
used by several tumors to evade or suppress local 
immune response, thereby hindering the development 
of effective anti-tumor immunity and limiting the thera-
peutic effects of different immunologic strategies such 
as the use of dendritic cell-based vaccines10-12. Conse-
quently, for the development of new immunotherapy 
strategies it is highly important to understand the im-
munoregulatory systems present in tumor microenvi-
ronment. Here, some of the immunoregulatory mecha-
nisms described in breast cancer will be discussed.

Tumor antigens

Tumor cells can express proteins that are recognized 
as antigens by the immune system. These proteins can 
be tumor-specific antigens (TSA), such as mutated pro-
teins, chromosomal aberrations or some viral proteins’ 
derivatives. There are also the so-called tumor-associ-
ated antigens (TAA), which are not tumor-specific and 
can be found in healthy tissues, but are more common-
ly expressed by tumor cells than TSA13. TAAs may be 
originated by overexpression of cellular proteins that 
normally are not exposed to the immune system, such 
as embryonic proteins14. Most TAAs are weak immuno-
genes because they derive from the body’s own pro-
teins, which limits immune recognition. In addition, lym-
phocytes that are able to recognize these TAAs have 
low affinity owing to thymic tolerance processes13. 
TAAs aforementioned characteristics have hindered the 
search for therapeutic targets. Nevertheless, some 
TAAs showing some of the characteristics required to 
be therapeutically used in breast cancer, such as being 
immunogenic and being expressed in tumor cells in a 
significant percentage of patients, have been identified. 
Among them, one of the most important is human epi-
dermal growth factor receptor 2 (HER2), which is 
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T cell-mediated immunoregulatory 
mechanisms

Main immunoregulatory mechanisms that have been 
described in breast cancer include those mediated by 
T cells. The presence of CD4+ T cells in tumor infiltrate 
has been associated with negative prognosis, unlike 
the presence of CD8+ T cells28. One of CD4 T cell 
populations that plays an important role in breast can-
cer pathogenesis is interleukin 4 and 13 (IL-4 and 
IL-13)-producing Th2 cells, which promote tumor devel-
opment by inducing the production of growth factors 
that accelerate cancer cell proliferation29-31. In addition, 
both these cytokines have been observed to be in-
volved in anti-tumor immune response local suppres-
sion32,33, in the promotion of metastasis34 and in tumor 
cells resistance to apoptosis35. IL-13 can be observed 
both in tumor and tumor adjacent tissues; however, 
there is higher expression within tumor tissue, which 
positively correlates with tumor size36. IL-13 tumor de-
velopment-promoting function in breast cancer has 
been confirmed in animal models, where its biological 
activity is blocked29,33. The presence of the CCL5 
chemokine has been described to promote breast 
cancer growth and metastasis by attracting CD4 lym-
phocytes, which express the CCR3 receptor, and by 
promoting their differentiation into Th2 cells37-40. By 
means of T cell response modulation in animal models, 
decreasing Th2 cell induction and favoring the pres-
ence of Th1 cells has been observed to produce an 
induction of CD8 cytotoxic cells able to control tumor 
growth41. This strategy is being investigated as a treat-
ment alternative.

Other CD4 T cell population that has been associat-
ed with tumor development is regulatory T (Treg) cells, 
characterized by Forkhead Box P3 (FoxP3) transcrip-
tion factor expression42. Treg cells usually participate 
in peripheral tolerance mechanisms by preventing au-
toimmune or immune hyperreactivity processes43. An 
important infiltration of Treg FoxP3+ cells within tumors 
and surrounding regions has been observed in different 
neoplasms, including breast cancer; specially, when it 
occurs in tumor-surrounding areas, this infiltration is 
associated with poor prognosis44-48. Breast tumor-de-
rived Treg cells show specificity for TAA and recognize 
the same epitopes than effector T cells49, which evi-
dences their potential participation in anti-tumor re-
sponse suppression. In support of the above, the ability 
of tumor Treg cells to suppress the cytotoxic activity of 
CD8+ T cells that are specific to TAAs such as HER2 
has been demonstrated in animal models50. Treg 

frequency increase does not only occur at the lesion 
site; higher frequency of these cells in peripheral blood 
has also been reported in patients with breast cancer, 
especially at advanced stages51. However, in spite of 
the existence of an increase of Treg cells in breast 
cancer patients’ blood, their activation status and sup-
pressor capacity are not elevated, unlike what occurs 
in tumor tissue-derived cells, which show highly elevat-
ed activation status and suppressor capacity47,52. Treg 
cells are attracted to tumor cell-produced CCL-22 
chemokine, which is recognized by Treg cell-expressed 
CCR4 receptor32. In addition to their migration, Treg cell 
accumulation in tumor microenvironment is due to in 
situ proliferation of these cells52. Molecules with regu-
latory function that are highly expressed in tumor Treg 
cells include cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4), inducible T-cell co-stimulator (ICOS) 
and glucocorticoid-induced tumor necrosis factor re-
ceptor (GITR)52-54. Since these molecules are important 
to Treg cells functionality and are highly expressed, 
they have been studied as potential therapeutic targets 
that allow for tumor Treg cells suppressor effect to be 
blocked and this way enable the development of an 
anti-tumor response55-57. Currently, an anti-CTL4 anti-
body (ipilimumab) is used in clinical practice for the 
treatment of melanoma, and its effect on breast cancer 
is being assessed (ClinicalTrials.gov, NCT01502592). 
In addition, another anti-CTLA-4 antibody, tremelim-
umab58, is being investigated in clinical trials (Clinical-
Trials.gov, NCT02536794). Similarly, there are preclin-
ical studies showing that GITR modulation may favor 
the development of anti-tumor responses56,59,61. The 
combined use of these agents might have an impact 
on tumor development by inhibiting one of the main 
suppressor mechanisms in human tumors, such as 
Treg cells.

Antigen-presenting cells in breast cancer

Th2 cell generation in breast cancer is induced by 
dendritic cells (DC) that have been conditioned by the 
tumor microenvironment and are characterized for ex-
pressing OX40L, which is one of the molecules directly 
implied in CD4+ T cells polarization towards a Th2 
profile62,63. DC are conditioned in the tumor microenvi-
ronment by the presence of thymic stromal lymphoietin 
(TSLP), which is produced and secreted by tumor cells 
and makes for DC to express large amounts of OX40L 
and not to express IL-1263. When interacting with CD4+ 
T cells, tumor DC induce T cells polarization to produce 
IL-4, IL-13 and tumor necrosis factor alpha (TNF-α), but 
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not IL-1063; this Th2 cell variant is known as pro-inflam-
matory Th2 cells64. Furthermore, TSLP-exposed DC 
have been shown to acquire the ability to induce Treg 
cells from CD4+ T cells65. In addition to Th2 and Treg 
induction, which favor tumor development, breast tu-
mor-isolated DC have their antigenic, phagocytic and 
maturation capacity decreased, as well as the expres-
sion of co-stimulation molecules, such as CD40 and 
the B7 family66,67. On the other hand, plasmacytoid DC 
(pDC) that infiltrate breast tumors have been observed 
to have deficient IFNα production caused by higher 
amounts of transforming growth factor beta (TGF-β) 
and TNF-α present in tumor microenvironment53,68. 
These cells have elevated capacity to induce and acti-
vate Treg lymphocytes, thus eliciting their accumulation 
and activation at the lesion site69. In fact, infiltration of 
both cell populations in breast tumors has been asso-
ciated with poor disease prognosis69-71. Tumor pDC 
express elevated levels of ICOS ligand, and it is through 
this molecule that pDC activate Treg cells, thus causing 
for them to produce large amounts of IL-10, which has 
an immunosuppressant effect69,70.

Breast tumors cell infiltrate also contains macro-
phages; these cells are known as tumor-associated 
macrophages (TAM)72,73. The presence of TAM in 
breast cancer is associated with poor prognosis and 
higher risk for the development of metastasis74-76. Most 
TAM have an anti-inflammatory M2 phenotype and ex-
press elevated levels of the cyclooxygenase 2 (COX-2) 
enzyme, which leads to the production of prostaglan-
dins that, in turn, favor the generation of Th2 cells and 
tumor growth77-79. TAM have been described to favor 
tumor cell proliferation and survival by inducing the 
expression of molecules such as bcl-279. TAM can in-
duce COX-2 expression in tumor cells by means of the 
production of IL-1β, which induces TAM polarization in 
M2, thus generating a retro-stimulation system that fa-
vors tumor development78,80. TAM can directly affect 
lymphocyte activation by secreting large amounts of 
IL-10 and TGF-β81, and promote tumor growth by means 
of the secretion of growth factors such as vascular en-
dothelial growth factor and epidermal growth factor82. 
They are also able to produce chemokine CCL22 to 
attract Treg cells into the tumor microenvironment83.

Immune system cells and tumor stroma 
cells interactions

Tumor microenvironment consists of cancer cells, in-
flammatory cells and stromal cells. The dynamical inter-
actions of cells that form part of tumor microenvironment 

determine the environmental conditions under which 
tumor development is produced84. Recent experimental 
evidence has demonstrated that an important compo-
nent of tumor stroma is mesenchymal stem cells 
(MSCs)85. MSCs, which originally were reported in 
bone marrow stroma, have strong attraction for tumor 
microenvironment and can differentiate into cells that 
favor the tumor niche86-89. These cells are able to 
promote tumor growth in breast and colon cancer an-
imal models90-93. However, the mechanisms whereby 
they induce tumor development are not known, and it 
has been suggested that it can be partly mediated by 
their angiogenic and immunoregulatory properties, 
which have been described in vitro for bone mar-
row-derived MSCs91,94,95. One of the mechanisms is 
tumor cell proliferation and migration induction by 
means of IL-6 and IL-8 secretion96,97. Exposure to 
TNF-α, which is present in tumor microenvironment, 
has also been reported to induce chemokines CXCL9, 
CXCL10 and CXCL11 in MSCs, which promotes attrac-
tion and mobilization of tumor cells expressing the 
CXCR3 receptor for these chemokines98. Finally, 
MSCs have been observed to produce large amounts 
of TGF-β, which directly affects leukocyte functionality 
and induces Treg cells generation in the tumor 
microenvironment99.

Blockade of immune checkpoints 

A series of molecules able to suppress local immune 
response, known as immune checkpoints, are ex-
pressed in tumor infiltrate cells11. Among the most wide-
ly studied, CTLA-4 and programmed cell death 1 (PD-1) 
are found mainly in patients with melanoma or renal 
carcinoma100-102. For CTLA-4, there are humanized 
monoclonal antibodies, developed for the treatment of 
patients with advanced melanoma100. In breast cancer, 
two anti-CTLA-4 antibodies are currently on evaluation 
process, as previously mentioned. CTLA-4 block inhib-
its Treg cells suppressor effect, as previously dis-
cussed, but it also favors a prolonged activation of ef-
fector T cells by hindering CTLA-4-mediated negative 
regulation, which is expressed in activated T cells. In 
these, CTLA-4 uses two inhibitory mechanisms: one of 
them is the transmission of a negative signal through 
its extracellular region, and the second is competitive 
antagonism of the co-stimulating signal that is mediat-
ed by CD28 and competes for CD80 and CD86 during 
interaction with antigen-presenting cells103-106. PD-1 is 
an inhibitory receptor expressed in T cells that limits 
their capacity of response107; its ligand PD-L1 is 
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expressed in tumor cells and tumor lymphocytic infil-
trate, and its expression is correlated with poor prognosis 
in some tumors12. In breast cancer, PD-L1 expression in 
tumor cells is associated with negative clinical and 
pathological characteristics108-110, with metastasis111 
and with decreased frequency of CD8 T cells112,113. 
PD-L1 expression has also been observed in leukocyte 
infiltrate, but its clinical meaning is controversial114-116. 
Currently, different clinical trials are ongoing with anti-PD-1 
antibodies in patients with breast cancer in order to 
know their safety and clinical efficacy117. 

Impact of chemotherapy on anti-tumor 
immune response

Many of the medications used in chemotherapy have 
been described to be able to promote anti-tumor immu-
nity mainly due to their capability to induce tumor cell 
immunogenic death118,119. An example is anthracyclines, 
which cause for tumor cells to expose calreticulin on 
their surface, as well the release of chromatin-binding 
high-mobility group B1 protein (HMGB1) and adenosine 
triphosphate, which together induce DC activation120-122. 
In addition, doxorubicin has been observed to increase 
the proliferation of CD8 T cells specific for tumor anti-
gens123. 5-fluorouracyl stimulates antigen capture and 
cross presentation in DC124, whereas taxanes increase 
natural killer cells activity and favor leukocyte infiltra-
tion124,126. Low-dose cyclophosphamide (50 mg/day) 
inhibits Treg cells activity by decreasing FoxP3 tran-
scription factor127; its use has been assessed in com-
bination with trastuzumab and granulocyte and macro-
phage-colony stimulating factor, with longer survival 
being observed in those patients who developed an 
anti-tumor immune response18. Finally, trastuzumab 
and pertuzumab combination therapy has antibody-de-
pendent cellular cytotoxicity as one of its main mecha-
nisms of action11,129.

These data clearly illustrate the importance of immune 
response in the treatment of breast cancer, demonstrat-
ing that therapeutic success of many compounds used 
in chemotherapy is largely due to their capability to 
stimulate an anti-tumor immune response in patients.

T cells adoptive transference

With the use of T cells with specific receptors to some 
tumor antigens, citotoxic cells that are able to recognize 
and react to tumor cells can be generated. At its first 
stages, this technology used lymphocytes isolated from 
the same tumor leukocyte infiltrate, but this has the 

great limitation that sufficient numbers of specific lym-
phocytes have to be obtained from clinical samples130. 
Subsequently, the generation of chimeric receptors that 
contain an antigen recognition site and an intracellular 
signaling domain were generated in order to guarantee 
lymphocytic activation when in contact with tumor 
cells131,132. The main limitation is that tumor antigens 
that are different to own antigens have to be found, since 
own antigens can elicit own material recognition and 
generate serious toxicity problems and adverse effects133. 
The use of this technology in breast cancer is beginning 
to be assessed in some clinical trials (clinicaltrials.gob, 
NCT01837602 and NCT 02547691).

Conclusions

Breast cancer remains a public health problem that 
affects a large number of women. Current treatments, 
both surgical and chemo- and radiotherapeutic, are 
highly aggressive for patients, and their efficacy is fo-
cused on disease early stages, and considerably de-
creases at advanced stages. These treatments do not 
always achieve cancer cells complete elimination and 
the disease can reappear in short time. In view of this 
panorama, immunotherapy is highly attractive for the 
treatment of neoplasms, due to immune response 
specificity, which can prevent the collateral damages 
observed with chemotherapy and radiotherapy, which 
affect both body’s tumor cells and normal cells. Another 
important factor is immune memory, which potentially 
could decrease recurrence rate. However, to date, 
many immune treatments have shown limited effect on 
patient survival. This is largely due to the presence of 
immunosuppressant mechanisms at the lesion site, 
such as the presence of Treg and Th2 cells, and the 
production of suppressor cytokines such as IL-10 and 
TFG-β. Identification and characterization of immuno-
regulatory mechanisms that affect immune response 
are essential to the design of new therapeutic strate-
gies that can impact on patient survival. Currently, one 
of the treatments with the highest efficacy in breast 
cancer is the use of anti-HER2 monoclonal antibodies 
(trastuzumab and pertuzumab), which in combination 
with chemotherapy achieve an important reduction of 
the disease and can in some cases eliminate the total-
ity of tumor cells. However, it is only applicable to pa-
tients with tumors that express the HER2 protein. The 
efficacy of these monoclonal antibodies is a clear ex-
ample of the potential of the use of immunotherapy in 
the treatment of cancer. Currently, several antibodies 
targeted against immunoregulatory molecules, such as 
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PD-1 and CTLA-4, are being assessed, with the idea 
of blocking immunosuppressant mechanisms that in-
hibit the generation of an anti-tumor response. The 
combined use of immunoregulatory molecule blockers 
with immune system activators, such as DC-based vac-
cines or transference of cytotoxic lymphocytes directed 
against TAA, is one of the most promising immune 
strategies in the treatment of breast cancer and other 
neoplasms. In the next few years, onco-immunology 
will definitively have a very important boom in the de-
velopment of new treatments against cancer.
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