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Abstract

Nanotechnology is an interdisciplinary field that holds promise for the development of better diagnostic methods and treat-
ments for different diseases, including cancer. Given the optical, magnetic and structural properties of nanoparticles (NP), 
their use has been proposed in the development of non-conventional treatments against cancer, such as photodynamic 
therapy (PDT). In PDT, a photo-sensitizing (PS) agent, which accumulates in tumor cells and causes the death of malignant 
cells after irradiation with light at a certain wavelength, is used. However, the use of PDT has different problems due to 
hydrophobic characteristics of the PS that hinder treatment administration and efficiency. Therefore, the use of NP as carriers 
is proposed and their coupling to PS to optimize treatment administration. In this review, the use of NP in PDT for the treatment 
against cancer is described, as well as their characteristics and molecular mechanism of action when coupled to a PS. 
(Gac Med Mex. 2015;151:78-89)
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Application of nanotechnology  
in biomedicine

Nanotechnology development started early in the 
past decade. Conducted studies propose an explana-
tion for the interactions between nanoparticles (NP) 
and biological systems, in order to verify their applica-
tion in biomedicine1. There are different works that 
suggest that NPs can be used as drug delivery sys-
tems to increase the response to anti-cancer com-
pounds2,3. A definition of nanotechnology could be the 
creation and use of materials or systems whose dimen-
sions in the nanometer scale are in the range of 0.1-
100 nm4, although there are some exceptions, such as 
the liposomes.

The NP synthesis offers the possibility to manipulate 
some of their physical and chemical properties that are 
necessary to achieve the goal of designing molecules 
that provide highly specific biological interactions. 
These have a variety of formulations for several uses, 
with advantages over other drug molecules in in vivo 
studies1. Currently, NPs have been used as carriers to 
deliver compounds directly into cancerous tissues be-
cause they are able to cross endothelial, vascular and 
tumorcell-membranes5.

Nanotechnology allows for a more efficacious admin-
istration of drugs against cancer, but regulatory ap-
proval of nanodrugs is slow. Up to date, there are 
different types of drugs approved by the Food and 
Drug Administration (FDA), such as Dixil®, a formulation 
of liposomes with doxorubicin approved in 1995 for the 
treatment of breast and ovarian cancer6, or Abraxane®, 
a conjugate of albumin bound to paclitaxel, approved 
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in 2005 for the treatment of metastatic breast cancer7. 
Table 1 presents some manufacturers that produce 
NP-coupled drugs that are approved in treatments 
against cancer up to the year of 2010. To date, nano-
technology integration to molecular biology and medi-
cine has translated into an active development of a 
new research area known as nanobiotechnology2. 

Formulations of a nanocarrier are designed to reduce 
drug clearance time and to provide protection against 
enzymatic degradation agents or against the environ-
ment4,12. Nanobiotechnology is beginning to change the 
drug delivery scale and method, and is highly valuable 
for investigation of treatments against cancer5, which in 
the past few years have focused on the development 
of molecular vehicles that serve as anti-cancer agents13. 

The topology of a NP comprises a nucleus, the lining 
and the surface with functional groups. The use of NPs in 
cancer therapy shows unique pharmacokinetic character-
istics; NPs are rapidly internalized and stabilized14. Due to 
the different application that the NPs have demostrate, 
there are formulations coupled with drugs approved for 
clinical use that are utilized as nanocarriers15 (Table 1).

The purpose of this review is to analyze those works 
that, using NPs coupled to photo-sensitizing agents, re-
port improvements in photodynamic therapy (PDT) in 
studies conducted in vivo and in vitro against cancer.

NPs in PDT

PDT is a FDA-approved technology that uses lasers 
to activate photosensitive drugs to treat cancer and 
other conditions by non-surgical, minimally-invasive 
means. The conditions that can be treated must be in 
places accessible to light, such as the esophagus, the 
skin, the stomach, the vagina, the cervix, etc.16. However, 
recently, owing to the development of optic fibers, its 
use has extended to internal organs such as the brain, 
the ovary and the liver, amongst others.

PDT requires three components: a photosensitive 
chemical substance known as photo-sensitizer (PS), a 
light source (lamp, laser, light emmiting diode [LED]) 
and intracellular molecular oxygen (O2); the energetic 
interaction of these three essential elements in the PDT 
is detailed in the Jablonsky diagram17 (Fig. 1). PS, in 
its electronic baseline status, which is in the singlet 
status (PS0), when absorbing light with an appropriate 
wavelength (a), reaches a first short-lived excited sin-
glet status (PS1*). The excited PS can return to its baseline 
status (PS0) by emmiting the absorbed energy as fluores-
cence (b) or by internal conversion (c). Alternatively, the 
excited PS (PS1*) can change into a first excited triplet 
status (T1*) by means of a process known as intersystem 
crossing (d). This is a forbidden transition (spin forbidden); 
however, a good PS achieves a high yield of these states 
at the so-called quantum capacity. The T1* status has a 
half-life sufficiently long to take part in the following three 
chemical reactions (f) and, therefore, most of the photody-
namic action is mediated by PS in this energetic state:

– Type I reaction: T1* can transfer an electron to a 
substrate (water or biomolecule) or substract a hy-
drogen atom from an AH2 substrate to generate 
peroxyde and superoxyde free-radicals.

– Type II reaction: electronic excitation energy is 
transferred to molecular oxygen present in the tissue 
in normal triplet status (3O2), giving rise to singlet 
oxygen (1O2), which is highly reactive and cytotoxic.

– Type III reaction: The Ps in triplet status reacts 
directly with with biomolecules through an oxy-
gen-independent pathway.

Type II reaction seems to play a central role in pho-
todynamic cytotoxicity due to high-efficiency interac-
tion of 1O2 with different biological molecules. All three 
reactions can occur simultaneously and in competence to 
generate cell death, but the relationship between them 
depends on the type of PS and on the nature of the sub-
strate molecules the reaction products interact with16-19. 

Table 1. Drugs using nanocarriers approved against cancer

Commercial name/compound Manufacturer Nanocarrier Indication

Abraxane/paclitaxel Abraxis Biosciences Albumin bound to paclitaxel Metastatic breast cancer6

DaunoXome/daunorubicin Diatos (France) Liposome Kaposi Sarcoma9

Doxil/Caelix/doxorubicin Ortho Biotech Liposome Kaposi Sarcoma, recurrent breast 
cancer, ovarian cancer10

Myoset/doxorubicin Cephalon (Europe) Non-pegilated liposome Combined therapy against recurrent 
breast cancer and ovarian cancer11

Adapted from Jain7 and Yu et al.8.

N
o

 p
ar

t 
o

f 
th

is
 p

u
b

lic
at

io
n

 m
ay

 b
e 

re
p

ro
d

u
ce

d
 o

r 
p

h
o

to
co

p
yi

n
g

 w
it

h
o

u
t 

th
e 

p
ri

o
r 

w
ri

tt
en

 p
er

m
is

si
o

n
  o

f 
th

e 
p

u
b

lis
h

er
. 

 
©

 P
er

m
an

ye
r 

Pu
b

lic
at

io
n

s 
20

14



Gaceta Médica de México. 2015;151

80

In its triplet status (T1*), PS can also return to its 
basline status (PS0) by emmiting a photon (phospho-
rescence) (e). Finally, it is degraded by the light; this 
process is known as photobleaching19.

PDT clinical application is carried out as follows:
– The photosensitizing drug is administered to the 

patient topically or systemically.
– Some time is waited in order for the photosensi-

tising drug to selectively accumulate in tumor cells 
or in cells affected by other condition. Here, fluo-
rescence can also be measured.

– An optic fiber is introduced into the cavity of the 
patient in order to carry light to the tumor.

– The tumor is localizedly irradiated with a laser 
system or other source of light20. 

PDT has a relatively low cost, it is non-invasive, it can 
be locally applied and no severe side-effects are ob-
served. Limitations of the method are associated with 
PS distribution and local and deep tissue irradiation, 
since wavelenghts do not sufficiently penetrate into the 
tissue12,21. To date, market-available PSs have specific 
characteristics that can benefit the patients, but no one 
is completely satisfactory.

In general, the main disadvantages of PSs are: short 
half-life within the tissue, partial retention in normal tis-
sue, they are difficult to synthesize and reltively unstable; 

however, they are not mutagenic and are minimally 
allergenic, easy to reconstitute and cost-effective22. In 
spite of these downfalls, clinical success is possible. 
Nanotechnology offers many advantages to optimize 
PS administration, thus improving PDT23, where NPs 
can be employed as: PS, photosensitizing molecule 
carriers, skeletons to photosensitize molecules and 
multifunctional carriers24,25.

NPs have the potential to improve PDT beyond its cur-
rent limitations21. There are many ways to modify PSs: for 
example, coupling them with delivery agents within lipo-
somes26, micelles27-30, ceramic NPs31, gold nanoparticles 
(AuNP)32 and polymer NPs33. In table 2, PSs that have 
been conjugated to different types of NPs are presented, 
as well as the maximal absorption wavelength for each 
PS, showing that it falls within the visible light spectrum, 
thus improving the excitation efficiency of each PS. The 
advantage of using a NP is that the PS is delivered to 
the tumor site in a more selective form and with low toxic-
ity, which causes very little damage to normal tissues15,34. 

The first studies within the area of NPs coupled to PSs 
started in 1991; for this review, publications made on the 
subject in different Latin American databases such as 
BIREME51, LILAC52 and SCIELO53 have been examined, 
as well as European databases including SCOPUS54 and 
SCIENCEDIRECT55 and, finally, PubMed56. A total of 

Figure 1. Jablonsky diagram, modified to explain cell biological response mechanisms induced by PS after irradiation with light at a specific 
wavelength. Photophysical processes: absorption (a), fluorescence (b), internal conversion (c), intersystem crossing (d), phosphorescence 
(e), reactive oxygen species formation (f), PS reaction with biomolecules and oxygen-independent in the triplet state (T1*) (g). 
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514 published original articles have been found up to 
the first quarter of 2014; performing a search for the 
number of patents in the USPTO database with the key 
terms “nanoparticles” and “photodynamic therapy”, 
196 registered patents were found up to date57. The 
graph on the number of publications per year is pre-
sented in figure 2.

The first works were published by two groups. One 
of them, the Brasseur et al. group, in 1991, used the 
PS hematoporphyrin coupled to an organic polyalkyl-
cyanoacrylate NP; the conjugate demonstrated easy 
PS release from the formulation37.

The number of publications, however, did not in-
crease significantly until the year 2003, when PS-cou-
pled NP patents started simultaneously; the synthesis 
mechanism and some in vitro tests had been de-
scribed. These works include those by Konan et al. 
(2003), using the PS meso-tetra (4-hydroxyphenyl) por-
phyrin bound to NP with poly(D,L-lactic co-glycolic 
acid) (PLGA) employing the emulsification-diffusion 
technique58. Phototoxicity was assessed in the breast 
cancer EMT-6 cell-line and higher citotoxic effect was 
found at low PS concentrations than when it was ad-
ministered only in the cell-line59. 

Other type of NPs patented in 2003 was developed 
by the Prasad group, with ceramic NPs that would 
serve as PS carriers60. Other works followed, such as 
the one by Ricci-Junior et al., who in 2006 proposed 
the syntesis of zinc-containing, phthalocyanine-cou-
pled nanocapsules covered with PLGA, with a 265 nm 
diameter, which generated 60% of cell death after the 

PDT in the P388D1 cell-line, murine macrophages33,48. 
Other types of PSs coupled to NPs are shown in table 2.

NPs developed to be used  
when applying PDT

Since PDT efficacy is attributed to the production of 
the singlet oxygen (1O2), two strategies can be followed 
when NPs are used to achieve this goal: with biode-
gradable PS-releasing NPs, or with non-biodegradable 
NPs, in which case there is no need to release them12. 
In a review by Konan et al., the PS delivery processes 
are divided into passive and active base according to 
the presence or absence of the target molecule on the 
surface of target cell61. However, this definition does 
not consider the role played by NPs in the PDT process.

The use of NPs as carriers plays an important role 
as an active intermediary in the photodynamic activa-
tion process. Currently, a new classification has 
emerged according to their function. NPs can be di-
vided in two classes: as passive or active carriers for 
PS excitation. As passive carriers, they can be sub-
classified according to the composition of the material 
into biodegradable and non-biodegradable (for exam-
ple, metallic and ceramic NPs); and are termed active 
by the activation mechanism in therapy that favors the 
PS excitation process62. Classifications of NPs that 
have been used in PDT are shown in table 3.

NPs coupled to PS currently in preclinical phases 
include, for example, the liposome-covered meta-tetra(hy-
droxyphenyl)chlorin (mTHPC) formulation of Foslip®. 

Table 2. PS conjugated to NPs

PS Types of conjugated NPs Abs (nm)

PpIX Mesoporous silica NP35

Silica NP36
630

Hematoporphyrin Polyacrylamide NP37 630

5-aminolevulinic acid Conjugated with AuNP38

Alginate and chitosan NP-modified folic acid39 
630

mTHPC Silica NP40, micelles4 652

BChl-a PLGA NP41 740

Ce6 Glycol-chitosan NP42 690

Phthalocyanines AuNP43, liposomes44

PEG-PCL micelle NP45, silica NP46

PLGA NP47,48

680

Zinc phthalocyanine CdTe QD49,50

BChl-a: Bacteriochlorophyll-a; Ca6: chlorin e6; PEG-PCL: polyethlene glycol-poly-e-caprolactone.
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However, several studies have reported secondary 
effects with Foslip®, such as tachypnea, salivation and 
agitation63, reduced damage in healthy tissues64,65, tu-
mor selectivity66 and high absorption into the skin67. 
The potential use of a Foslip® liposomal formulation has 
been assessed in a murine model of breast cancer 
local recurrence68. The data show that Foslip® is a very 
satisfactory PS for PDT, with promising efficacy, im-
proved selectivity and reduced side effects. Further 
studies are necessary for its development and optimi-
zation of the formulation of liposomes for PDT.

Silica phthalocyanine 4 (Pc-4) has been clinically test-
ed46. It is one of the most efficient phthalocyanine-based 
PSs and has demonstrated high photodynamic activity. 
However, it is an insoluble, hydrophobic agent and has 
a tendency to aggregate in aqueous solutions that 
reduce its photodynamic activity69. It has been incor-
porated in porous silica NPs (Pc-4SNP) enabling for its 
solubility, stability and PS delivery to melanoma A375 
cells to be improved and showing increased photody-
namic activity compared to free phthalocyanine46.

A different type of PS carriers are mesoporous sili-
ca-covered lipidic NPs, encapsulated to improve PS 
focalization and biocompability in the PDT. The results 
show better in vitro absorption in MCF-7 human breast 
carcinoma cells compared with the non-covered agent70. 
Recently, preclinical studies have been conducted with 

a new type of liquid ionic PS (cholinium-purpurin-18 
[Chol-Pu-18]) and AuNP. They were prepared using 
the soluble PS based on a purpurin and choline hy-
droxide71, showing better response with the conjugate 
when the PDT was applied on cell-lines.

These results suggest that the use of NPs as PS de-
livery vehicles increases the response to treatment with 
PDT. In the following sections we approach the admin-
istration of different types of NPs coupled to PS that have 
been tested in in vitro and in vivo studies and have 
demonstrated better response than with standard PDT. 

Polymer-based biodegradable NPs

Biodegradable NPs are made out of polymers that deg-
radate, thus releasing the PS12. They comprise a mixture 
of lactic acid and glycolic acid polymers. The increase in 
the biodegradation rate is achieved by the increase of the 
glycolic acid molar proportion in the copolimer. In 2003, 
Konan et al. synthesized NPs with a 150 nm diameter 
with a combination (50:50 PLGA:poly DL-lactic acid) 
loaded with a meso-tetra (p-hydroxyphenyl) porphyrin 
(p-THPP) second-generation PS. In this study, the ef-
fects of PDT using the NP conjugate with p-THPP were 
found to generate 95% of cell death21. However, there 
are not yet reports of in vivo studies on the use of 
biodegradable NPs.

Figure 2. Number of publications made in the area of NP and PDT.
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It should be considered that in vitro photoactivity 
depends mainly on the photochemical and penetrating 
properties of the NPs loaded with PS in cells, whereas 
in vivo activity is driven by different factors, such as 
pharmacokinetics and tissue distribution of the NPs, 
which are affected by tissue components12.

Polymer-based non-biodegradable NPs  
for PDT

The use of non-biodegradable NPs presents many 
advantages. The most important is that no time is re-
quired for biodegradation of the NPs; the PS is protect-
ed from the environment by the NPs, which serve as 
multifunctional platforms and are smaller in size62. Poly-
acrylamide polymers can be used for the synthesis of 
non-biodegradable NPs, but most are ceramic (silica) 
or metallic-based72.

Ceramic NPs 

These are porous-surface inorganic systems that 
have emerged as drug carriers with a huge potential; 
they can be made out of silica, titanium and aluminum 
materials73,74.

The first PS-bound silica NP systems were synthe-
sized and tested by Kopelman et al. in 2003 and by 
Gary-Bobo et al. in 201175,76. They used mesoporous 
silica NPs (MSN) coupled to the PS 5-p-aminophe-
nyl-10,15,20-sulfonatophenyl-porphyrin; this conjugate 
was coupled to the galactose ligand and the drug 

camptothecin (CPT). The photodynamic effect was 
assessed in colon cancer HCT-116, breast cancer 
MDA-MB-231 and pancreas cancer Capan-1 cell-
lines; a percentage of cell death of 73 and 79% was 
found in colon and breast cancer cells, respectively, 
and in pancreatic cancer cells, 100% cell death was 
observed after the PDT77. Location of the conjugate 
in cell lysosomes was assesed by confocal micros-
copy76,77. Prasad et al. encapsulated, in a silica ma-
trix, the PS 2-de-vinyl-2-(1-hexyloxyethyl) pyrophe-
ophorbide (HPPH), a PS currently in phase I and II 
clinical trials. In vitro experiments showed that the 
conjugate induced a percentage of cell death of 60% 
after the PDT60. 

Quantum dots (QD)

QDs were identified in the decade of the 80’s and 
their synthesis was achieved in the early 90’s. Current-
ly, many uses have been found for them as solar cells, 
LED and imaging and diagnostic agents. Furthermore, 
due to their characteristics, Bakalova et al. suggested 
in 2004 that they could be used as possible PSs in 
PDT78. 

Since they show wide absorption spectra, it has 
been suggested that their conjugation to PSs might 
provide more flexibility to use different excitation wave-
lengths in order to activate the PS. However, most of 
these complexes are not water-soluble and the bio-
compatibility and biodisponibility properties of these 
compounds have not yet been demonstrated and for 

Table 3. Classification of NPs used in PDT

Passive NPs

Biodegradable Mainly PLA and PLGA Solid matrix/capsules containing controlled-release PS through biodegradation

Non-biodegradable Ceramic (silica) PS is adsorbed/covalently bound to a porous surface; in addition, it is used to 
co-encapsulate two photons

Gold 5-mm NPs acting exclusively as carriers

Iron oxide Carries drugs directly or co-encapsulated in micelles

Polyacrylamide Encapsules two photons of a colorant by microemulsion

Active NPs

PS QD NPs transfer incident light energy directly to the surrounding oxygen

Self-illuminated BaFBr:Eu+, Mn+ Scintillation (with luminous persistence), X-ray excitation activates the bound PS

NaYF4:Yb,Er/Tm Transduces low-energy light with the emissions of energy, activates the 
associated PS 
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these reasons they might not be optimal in biological 
settings79.

Magnetic NPs 

These MPs are made out from iron oxide or other 
superparamagnetic compounds. There are two types 
of iron oxide that have been investigated mainly for use 
in the formulation of magnetic NPs: maghemite 
(g-Fe2O3) and magnetite (Fe3O4), both biocompatible, 
although magnetite is the most promising candidate. 
Generally, they are covered with dextran, phospholip-
ids or other compounds to inhibit aggregation and to 
increase their stability. Their magnetic characteristics 
confer them usefulness in techniques to obtain images 
with magnetic resonance23,73.74.

AuNP

AuNPs can be easily prepared from tetrachloroauric 
acid (HAuCl4), which yields stable monodisperse coloi-
dal systems with a size ranging from 1 to 150 nm80. 
AuNPs have unique chemical properties that make 
them suitable for promising applications in gene ther-
apy and drug delivery to specific cells. Gold nanocap-
sules have been tested in several cancer models, both 
in vitro and in vivo73,74.

Among other nanostructures, AuNPs play an import-
ant role in cancer therapy since they can improve ra-
diation-induced damage; they produce heat during the 
exposure to UV rays and near-to-infrared radiation; 
therefore, they offer the possibility of cancer cells de-
struction by thermal ablation; they improve the admin-
istration of anti-cancer drugs that are highly insoluble 
in water or unstable in the biological environment; they 
increase the half-life time of drugs and imaging agents 
by modifying the NPs surfaces to avoid the loss of drug 
caused by rapid clearance and metabolism81. 

The use of PS-coupled AuNPs was first proposed by 
Russel et al. in 2002, showing a clear quantum in-
crease of the 1O2, attributed to the metal due to higher 
fluorescence25. Other PSs have been employed, such 
as porphyrins, chlorins, protoporphyrin IX (PpIX)-ALA. 
An attractive characteristic of this approach is that 
AuNPs are nor toxic and are already used in therapy. 
Therefore, approval and clinical application can be 
ultimately expected to be easier to achieve21.

In 2008, Cheng et al. developed a complex consist-
ing of AuNP, polyethylene glycol (PEG) and phthalocy-
anine-4 (Pc-4), for in vivo administration of drugs in 
PDT82. When the PS Pc-4 is injected in vivo in PDT it 

takes one or two days until it accumulates in the tumor 
site. Using the NP conjugate, accumulation time in the 
tumor was reduced to 2 h34,82,83.

In 2011, Cheng et al. assessed the efficiency of 
AuNP conjugated with phthalocyanines in mice and 
demonstrated a system that provided rapid release 
and tumor penetration in a matter of hours. Pharmaco-
kinetics of the conjugates, in a seven-day test period, 
demonstrated rapid excretion of the drug, verified by 
its fluorescence in urine. This study suggests that 
non-covalent delivery through an AuNP offers an at-
tractive approach for drugs against cancer to pene-
trate deeply into the center of tumors84. 

This work shows the diagnostic potential of PDT us-
ing AuNP with phtalocyanines in mice. The system 
showed a unique versatility, since it enabled drug ad-
ministration, quantitative control of the delivery process 
and cancer therapy. However, in the study, the fluores-
cence images of tumors in the mice showed the pres-
ence of the conjugate not only in the tumor, but also 
in other areas. These types of delivery systems can be 
improved, for example, with monoclonal antibodies 
with specificity for ligand-receptors at the tumor site. 
Using this system of NPs coupled to PSs, the drug-de-
livery process in the future might be easily controlled 
and quantified84. 

Table 4 presents different models of studies on PDT 
applied with PSs coupled to NPs. The main results of 
studies conducted in different cancer cell-lines (in vi-
tro) are presented. Most of these studies suggest that 
there is a percentage of cell death equal or higher than 
90% after having received PDT in comparison with 
controls. The results of in vivo studies conducted in 
nude mice with grafted tumors are presented: surpris-
ing effects have been found, with PDT achieving a 
reduction in tumor size or even tumor ablation in ther-
mal therapy and PDT combined treatments. Finally, the 
start of a clinical trial in lymphoma patients using silica 
NP-encapsulated Pc-4 as PS is reported.

Development of NPs coupled to PS  
in Mexico

In Mexico, there are many institutions assigned to 
different research centers that work with nanotechnol-
ogy and nanoscience. Different groups are developing 
NPs coupled to PSs for PDT. The first work published 
in Mexico on NPs combined with PDT was performed 
by our working group: we demonstrated that the use 
of PDT combined with AuNP increased the percentage 
of cell death in cervix carcinoma C33-A cells from 50% 
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Table 4. Models of sudies on PDT application with PS coupled to NPs

PS NP Study model Cell-death percentage Doses of light

In vitro

Photofrin85 Micelle complexes 
encapsulated in 
phthalocyanine dendrimers

A-549 lung cells 88% 80 J/cm2

HPPH86 Silica NP Colon-26 colon cells 95% 3.2 mW/cm2

Pc-446 Pc-4 encapsulated in 
silica NP

A375 B16F10 melanoma cells 92% 25 mW/cm2

ZnPc45 PCL A-549 lung cells 92% 100 J/cm2

PHPP87 Magnetite (Fe3O4) NP SW480 colon cells 40% 4.35 J/cm2

Meso-tetraphenyl 
porpholactol88

Encapsulated with PLGA Glioblastoma cells 95% 42 mW/cm2

Ce689 Albumin NP HT29 colorectal cancer cells 90% 6 J/cm2

Magnetic NPs90 MGC803 gastric cancer cells 80% 30 mW/cm2

PpIX91,92 AuNP HeLa cervix cancer cells 92% 64.23 J/cm2

In vivo

PS NP In vivo study model In vivo study model

Zinc 
Phthalocyanine35

Encapsulated with PLGA Nude mice with grafted tumors Decrease in tumor size in comparison with 
controls after the PDT

Ce69 Albumin NP
(Ce6-HAS-NP)

Nude mice with grafted tumors 
with HT-29 cells

Significant decrease in tumor size; there 
was high accumulation of the conjugate in 
the tumor site.
Side-effects with damage to the liver

Ce693 Gold nanorods Nude mice with grafted tumors Tumor reduction after PDT followed by PTT. 
Synergistic treatment

Pc-482,84 AuNP Nude mice with grafted tumors 
with glioma cells (9L)

No side effects were observed with the 
conjugate.
Reduction of tumor and efficient penetration 
of drug in the tumor was found

Clinical trials

PS NP Patients Trial phase Observations 

Pc-494 Pc-4 encapsulated in 
silica NP

Patients with stage IA-IIA 
non-Hodgkin Lymphoma

Phase I Patient 
entollment

PCL: poly-e-caprolactone; PHPP: 2,7,12,18-tetramethyl-3,8-di(1-propoxyethyl)-13,17-bis(3-hydroxypropyl)porphyrin; Ce6: chlorin e6; PTT: photothermal therapy.

with conventional PDT to 70% with PDT using the NP 
conjugate95,96.

These NPs were characterized and thermal diffusiv-
ity of the PS, PpIX, was determined by thermal lens 
spectroscopy (TLS) in a solution mixed with an AuNP 
at different concentrations. The results showed that this 
value increased proportionally with the NPs concentra-
tion due to the strong electrostatic interaction between 
PpIX and the NPs, favoring an increase of the light 
absorption peak intensity, as well as heat transference 

between the PS and the NPs97. This was demonstrated 
in culture media that contained AuNP, where thermal 
diffusivity increased compared to the control98.

On the other hand, the in vitro assesment of the 
non-radioactive relaxation time (NRRT) of PpIX in com-
bination with AuNP was performed with photoacoustic 
spectroscopy (PAS), and the value of the PpIX NRRT 
signal with AuNP was found to be higher than the mean 
value of standard PpIX. Relaxation time was shown to 
be consistent with the useful life of the triplet status of 
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porphyrins used in PDT98. Additionally, a maximal ab-
sorption peak of 404 nm was observed in a frequency 
range of 17-80 Hz99. This led to propose the synthesis 
of AuNPs coupled to PpIX, a conjugate known as 
AuNP-PpIX, using the monodisperse coloid method 
used by Maldonado et al. In 201091, NP with a 25 nm 
diameter were obtained, characterized with transmis-
sion electronic microscopy (TEM)91,100 (Fig. 3 A). PpIX 
was found to have an absorption peak at 409 nm and 
a secondary one at 550 nm, whereas the conjugate 
showed a main broad peak at 409 nm and a secondary 
one at 620 nm100 (Fig. 3 B), a very desirable charac-
teristic in all nanosystems designed for future use in 
cancer diagnosis.

When PDT was applied to cervical cancer cells 
(HeLa), a significant effectivity increase was found when 

the conjugate was used as PS, in comparison with the 
effectivity obtained when the classical PDT (with PpIX) 
was applied (Fig. 3 C). In the HeLa cells, when PDT 
was applied with PpIX + NP, greater effectivity was 
obtained (45% mortality) with regard to the treatment 
wlth the classical PDT (27% mortality), but when the 
conjugate was employed as PS, 91% cell death was 
achieved91. 

In 2012, Roblero-Bartolón et al. demonstrated that 
AuNP-PpIX conjugates accumulate in the nucleus and 
cytoplasm of HeLa cells, with no affinity for the mito-
chondria101. Figure 3 D shows fluorescence indicating 
the intracellular localization of the conjugate in HeLa 
cells by confocal microscopy. Our group has been 
interdisciplinary integrated for the design, synthesis 
and characterization of AuNps coupled to PpIX. On the 

Figure 3. Development of AuNPs coupled to the PS PpIX in Mexico. A: micrograph of the conjugate obtained by TEM. B: absorption 
spectrum of PpIX in the red line and absorption spectrum of the conjugate in the blue line, C: treatment with PDT in HeLa cells with PpIX 
and with the conjugate. D: co-localization of the conjugate in HeLa cells (images used with authorization of the authors)101.
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other hand, Eshghi et al. published in 2001 on the 
synthesis of a conjugate similar to ours, AuNP coupled 
to PpIX (GNP), but with a 7 nm diameter. They found 
the conjugate to have a 630 nm peak of absorption 
and high efficiency in the production of ROS. GNP 
demonstrated to be an efficient PS for PDT in the HeLa 
cell-line. The effect of toxicity induced by the conjugate 
was compared with the control experiments, and a 
percentage of cell death of 92% was found in the 
treated lines, which suggests that the PpIX-GNP con-
jugate is an excellent cadidate for PDT92. This indicates 
the potential of gold and PS nanoconjugates in PDT 
optimization.

Another working group in Mexico is based in the 
Universidad Autónoma Metropolitana (UAM), and is 
directed by Dr. Tessy López. This group has published 
the synthesis of titanium dioxide NPs coupled with the 
PS zinc-phthalocyanine (ZnPc). The conjugate was sta-
ble at temperatures as high as 250 ºC, and the photo-
dynamic effect was tested in four cell lines: monkey 
epithelial cells (Vero), human hepatocellular carcinoma 
cells (HepG2), acute monocytic leukemia cells (THP-1), 
and cells of a human-derived fibroblast primary culture 
(HDF). They demonstrated that the conjugate was lo-
cated preferably in organelles such as mitochondria 
and lysosomes, which might suggest a cell death 
mechanism by apoptosis after the PDT. In addition, in 
this work, the HepG2 cell-line was found to be sensitive 
to PDT, with an up to 90% cell death percentage being 
induced102.

Conclusions and perspectives

It is important to observe that in the last 35 years 
thousands of patients have been treated with PDT in 
the world. The use of this therapy has been increasing 
but, although PDT is well established and approved by 
the FDA for conditions such as macular degeneration, 
skin and Barret esophagus cancer, at an international 
level, its use is still marginal. This may partially be due 
to the following PS-related factors: light absorption ca-
pacity in visible spectral regions is below 600 nm, 
which hinders penetration into tissues; the preparation 
of formulations that allow for parenteral administration 
is complex because most PS are hydrophobic, and 
selectivity for accumulation in diseased tissues is often 
not enough for clinical use. This makes acceptance of 
PDT difficult, since it is a personalized therapy, i.e., 
depending on the type of tumor, variables such as PS 
type and dosage, wavelength to be irradiated, type of 
tissue (more or less irrigated), time interval between PS 

administration and irradiation (drug-light interval) and 
oxygen concentration in the tissue to be treated. In 
view of all this, NPs offer solutions to improve the use 
PDT, they favor the PS properties by conferring them 
hydrophilic properties and an appropriate size to target 
tumor tissues, by increasing permeability, the retention 
effect and specificity, the latter with the use of biomark-
ers such as antibodies and peptides. Furthermore, 
they allow for low-energy light activation, wich enables 
penetration into tissues. 

Physical and chemical properties of the NPs turn 
them into a useful tool in therapies against cancer. 
Several researchers have focused on the search for 
strategies to increase PDT efficiency, and NPs offer this 
possibility, since an energetic transference between the 
NPs and the PS has already been observed, providing 
they maintain a distance equal or below 10 nm. To this 
end, ZnO, Au and Fe3O4, and PS, mainly porphyrins and 
phthalocyanines, have been employed. Some advan-
tages offered by the use of NPs in PDT is that dispersion 
of the remaining PS to other parts of the body is pre-
vented, thus reducing photosensitivity; other advan-
tage is that it increases the quantum capacity of the 
used PS, which increases therapy efficiency.

Applying the PDT using NP conjugates with PS helps 
to significantly improve the efficiency of such therapy. 
These results are encouraging and drive us to the 
search for those aspects that make possible to further 
increase the efectiveness of this therapy until 100% 
elimination of cancer cells is achieved, as well as to 
improve the PDT as a diagnostic method, so that it 
allows for cancer to be detected at early stages of the 
disease in order to improve patient’s expectations. For 
this, further studies have to be conducted to ensure 
the absence of side-effects that have not been reported 
to date in the in vivo models. 

PDT has been adopted as an emerging therapy for 
some conditions in the USA, the European Community, 
England, Canada, Russia, Japan, South Korea and 
Latin American countries such as Brazil, Argentina, 
Chile, Mexico, Venezuela, San Jose, Costa Rica, Gua-
temala, Honduras, Nicaragua, Panama, the Dominican 
Republic, El Salvador and Trinidad and Tobago. We 
consider that PDT combined with nanotechnology will 
soon be accessible for everybody as an established 
rather than experimental therapy.
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