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Abstract

Adult neurogenesis in the hippocampal dentate gyrus (DG) is a process that involves proliferation, differentiation, maturation, 
migration and integration of young neurons in the granular layer of the DG. These newborn neurons maturate in a 3 to 4-week 
period and then they are incorporated into pre-established hippocampal neural circuits, where they participate in cognitive 
functions, including spatial memory acquisition and retention, which are consolidated during sleep. In this review, we describe 
the main findings associating fragmented or total sleep deprivation with changes in DG neurogenesis, as well as their pos-
sible consequences on mental processes. In addition, some possible mechanisms implicated in this deterioration are analyzed, 
such as circadian rhythmicity, melatonin receptors and some growth factors. (Gac Med Mex. 2015;151:90-5)
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Introduction

One of the dogmas that marked last century’s neu-
rosciences claimed that replication of new neurons 
could not occur in adult life. However, since the works 
by Altman in the sixties, it was possible to overcome 
this ingrained dogma. One of the first experiments that 
reported neurogenesis in rodents attempted to observe 
the glial response upon lateral geniculate body focal 
damage. In this model, autoradiography with thymidine 
(an essential nucleotide in the conformation of DNA, 
which incorporates into the nucleus of the dividing 
cell) was used, and the presence of mitotic cells, un-
related with the site of injury was observed. These cells 
presented neuron ultrastructural characteristics, which 
suggested the existence of adult neuronal reproduction 

in specific cerebral areas1; thus, the term neurogenesis 
was coined (from neuro in reference to nervous system 
cells, and genesis, which means “birth”). Since that mo-
ment, numerous studies have reported neurogenesis in 
different species and cerebral regions. However, in this 
work we will focus exclusively on findings at the hippo-
campal level, given their association with sleep-wake 
cycle-modulating substances.

In 1977, Kaplan et al.2 found neurogenesis in the 
dentate gyrus (DG) and olfactory bulb in a 3-month old 
rodent. Hippocampal neurogenesis was confirmed by 
Miller et al. in 19883. They studied neurogenesis using 
immunohistochemical detection of bromodeoxyuridine 
(BrdU), an analog of thymidine that is incorporated into 
DNA during the S-phase of the cell cycle. With this 
experimental approach, they were able to determine 
the presence of proliferative cells in the subgranular 
zone (SGZ) of the DG and corroborated the findings 
reported with the 3H thymidine marker. Finally, Eriks-
son et al.4 studied the brains of five cases of patients 
with thyroid cancer (who had received BrdU injections 
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for diagnostic purposes) and were able to detect the 
presence of positive cells to BrdU and other neural 
markers (glial fibrillary acidic protein [GFAP], NeuN 
and calbindin) in the SGZ and subventricular zone 
(SVZ) of the human brain.

Neurogenesis at the SGZ in rodents

In the hippocampal DG there is a cellular basal stra-
tum known as SGZ (Fig. 1), which contains multipoten-
tial neural progenitors able to produce neurons and 
astrocytes throughout the individual’s entire life5. The 
use of BrdU labeling has allowed to determine that 
approximately 4,000 to 7,000 new neurons are gener-
ated per day, out of which less than a third do survive6. 
This implies an incorporation of around 250,000 new 
neurons per month in this zone7. New-born born sub-
granular cells start a 2-month maturation process, and 
during this period they project efferences and receive 

afferences from the CA3 (cornus ammonis 3) region8. 
This neurogenic process begins with radial astrocytes 
proliferation, which originate immature neuronal cells 
(neuroblasts)9 that migrate towards the so-called gran-
ular layer (Fig. 1)10. Once there, these young neurons 
project dendrites towards the DG molecular layer and 
spread their axons towards CA3 area pyramidal cells 
and the hilus to establish synaptic contacts with afferent 
axons of the entorhinal cortex, thus becoming mature 
neurons11. At each one of these stages, neural precur-
sors express a variety of molecular markers that are 
used to perform their typification (Fig. 2).

Neurogenesis at the SGZ in humans

DG in the human being is a dorsomedial concave 
groove that includes the CA4 area. Its medial portion 
is in front of the lateral fussure, limited by the fimbria 
and ventrally by the hippocampal fissure subiculum 

Figure 1. Schematic representation of the rodent hippocampus and the cell lineages found in the hippocampal DG SGZ. Radial astrocytes 
(type I cells) are considered the neural stem cells of this region, which give rise to neuronal precursors (type II cells) that migrate towards 
superior layers, where they differentiate into mature neurons (post-natal granular). This process lasts approximately 28 days, and during its 
course, subgranular progenitors express different molecular markers that allow for their typification to be performed. BLBP: brain lipid-binding 
protein; Tbr2: T-box brain protein; Prox1: prospero homeobox protein 1; MCM2: nuclear replication factor MCM2; DCX: doublecortin.
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(Fig. 3)12,13. This area has been associated with the 
processing of declarative memory14. In the human DG 
there are cells with similar characteristics to those re-
ported in rodents and non-human primates, although 
their general architecture shows important morpholog-
ical differences. Similarly as in rodents, most cells con-
centrate in the granular layer, but their numbers vary 
considerably; for example, in rats, the number is ap-
proximately 1.2 million neuronal cells15, whereas in 
humans it reaches 18 million16. Also the number and 

distribution of mossy cells of the hilus are different in 
each species; in rats, total number of neurons is esti-
mated to be 10,00011, whereas in the human this figure 
is approximately 1.72 million16. From a morphological 
point of view, mossy cells dendritic spines are propor-
tionally larger in humans than in rodents and mon-
keys18. In addition, some ramifications of these cells 
have been observed to penetrate into the molecular 
layer, which suggests they receive afferences from the 
hippocampal perforant pathway, a finding not confirmed 
in rodents, which, in addition, posess a well-defined 
hilus19. In humans, the number of neurons generated 
every day has been calculated to possibly reach ap-
proximately 700 per day20, although this number could 
decrease dramatically with increasing age4,21. Never-
theless, there are still little data on neural maturation 
dynamics in the human SGZ (Fig 2)21,22.  

Effects of SD on neurogenesis 

Sleep deprivation (SD) entails a number of physiolog-
ical disturbances in different organs and systems23-25. 
By means of electroencephalographic activity records, 
three biological basic states of the sleep-wake cycle 
have been determined in humans and other mammals: 
alertness state (awakeness per se), rapid eye move-
ment (REM) sleep with and sleep with no rapid eye 
movement (NREM). These cycles are produced by ac-
tivation of reciprocally connected thalamic and cortical 
neurons 26,27.
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Figure 2. Human and murine DG immunofluorescence protographs. 
Cell nuclei are labeled with 4’,6-diamidino-2-phenylindole (DAPI) 
(blue), astrocytes (green) were detected with anti-GFAP antibodies 
and proliferative cells (red) with antibodies against proliferating cell 
nuclear antigen (PCNA). In both cases, arrows point to a proliferating 
subgranular astrocyte. Calibration bar = 10 µm.

Figure 3. Schematic representation of the hippocampus of the human adult brain. The panel shows an amplificarion of the anatomical 
localization of the hippocampal SGZ and its relationship with the Ammon’s horn (cornus ammonis) (CA1, CA2 and CA3).
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Sleep seems to have an important function in mem-
ory consolidation, a dynamical process produced by 
interaction of hippocampal neuronal networks and the 
neocortex28. At the cortical level, pyramidal cell net-
works are modified (plasticity) as a result of calcium 
influx in the dendrites during the NREM cycle of sleep, 
which is characterized by the presence of slow waves 
that favors long-term memory29. Once memory is con-
solidated in the neocortex, the hippocampus gradually 
removes some pre-existig connections (short-term 
memory), pressumibly restoring the hippocampal ca-
pacity to generate networks30.

One of the most notorious negative consequences of 
SD in humans is the deterioration of memory31,32 result-
ing from a reduced acquisition of temporal memory33 
and declarative memory34,35, as well as low consolida-
tion of hippocampus-dependent memory36-40. Hippo-
campus-dependent memory consolidation in rodents is 
assessed as memory of objects, places and settings41-43, 
and its efficacy decreases after SD44,45. These tasks are 
comparable to the declarative memory test in humans, 
who also show defficiencies after SD34.

Hippocampal memory onsolidation and retention 
tasks are modulated by young neurons produced at 
the SGZ of the hippocampus46,47. Recent research in-
dicates that SD significantly reduces proliferation, sur-
vival, differentiation and even maturation of these new 
neurons. In this regard, Guzmán-Marín et al. have re-
ported a decrease in the proliferation rate at the hip-
pocampal DG occuring in animals deprived of sleep 
for 96 h48. Other study where the sleep REM phase was 
deprived reported an 82% decrease in the percentage 
of BrdU+ cells and 80% decrease in Ki67+ (a G1, G2 
and S cell-cycle phases proliferation marker) cells in 
this same neurogenic niche49. Furthermore, fragment-
ed sleep deprivation (FSD) during eight days signifi-
cantly decreased the number of Ki67+ cells at the 
SGZ. Similar results have been reported in adrenalec-
tomized animals subjected to FSD51, in which the ef-
fects of stress (generated by FSD per se) on cortico-
steroid-mediated neurogenic processes are neutralized. 
A similar study, where the SD model was used over a 
12-h period under light conditions showed no modifi-
cation in the average of BrdU+ and Ki69+-expressing 
cells52, and even the same SD time applied during the 
night produced an increase in the number of BrdU+ 
cells53,54. Taken together, these results indicate that 
total and partial (REM phase) deprivation of sleep 
greater than 56 h decrease new neuron proliferation at 
the hippocampus and that the mechanism regulating 
their proliferation is disturbed by SD.

The molecular mechanisms underlying the de-
crease in SD animal models are not completely clar-
ified. It has been suggested that these mechanisms 
are affected by circadian rhtyhmicity. Recent studies 
report variations in the subgranular cell proliferation 
rate in different deprivation periods (light/darkness) 
with the SD experimental model52-54. Such variations 
seem to be more significantly modified during the 
night55.56. In fact, the circadian rhythmicity process-
es that promote mitosis during the night have been 
suggested to act on the transition of the G2/M 
phase (G2-to-mitosis phase) and to be determinant 
for the continuity of the cell cycle or to induce apop-
tosis57. 

Currently, emphasis has been placed on the possi-
ble modulating role of melatonin in the neurogenesis 
process. Continuous exposure to light for 24 h reduces 
melatonin expression58 and proliferation at the hippo-
campal SGZ59. This neurohormone promotes cell pro-
liferation during the process of aging60 by decreasing 
the amount of free-radicals and this way avoid cell 
death caused by oxidative stress. The hippocampus is 
a region that is susceptible to the effects of stress and 
cell oxidation61,62. These events decrease the levels of 
brain-derived neurotrophic factor (BDNF) and calmod-
ulin-dependent protein kinase II (CaMKII). In this re-
gard, administration of melatonin to sleep-deprived 
rats increases the levels of these proteins in the hip-
pocampus, which suggests that this antioxidant favors 
the neurogenic process.

In addition to its functions as antioxidant, melatonin 
modifies neurogenesis through the melatonin recep-
tors 1 (MT1), present in subgranular neural precur-
sors63. In this regard, the administration of melatonin 
for seven days promotes DG neuronal parent cells 
survival and differentiation64. The number of BrdU+ 
cells has been reported to decrease by 39.6% after a 
96-h period of SD65. Similar effects are observed 
during an eight-day period of FSD, with a reduction 
occuring of a third of these cells66. FSD also produces 
a considerable decrease in neuroblast differentia-
tion45, although such changes have not been observed 
with total deprivation5. Curiously, the neuronal matura-
tion process in the SGZ is also affected by SD, a 
phenomenon observed with a 96-h total SD model65. 
Other events implicated in SD-mediated neurogenesis 
reduction involve the inhibitory effect exerted by long-
term potentiation on SGZ67, through reduction of the 
cAMP response element-binding (CREB) protein, 
BDNF68,69, calcium kinases calmodulin II and IV (CaM-
KII and CaMKIV)70. 
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Conclusions

During the phases of sleep, episodic and spatial 
memory are consolidated in the hippocampus, a pro-
cess likely coadjuvated by the generation of new cells 
in the DG. Different investigations show that SD in ro-
dents modifies neurogenesis. In fact, long deprivation 
periods decrease hippocampal cell proliferation, sur-
vival or maturation, without altering their integration into 
the DG circuitry. Circadian rhythmicity has been found 
to promote mitosis of neural progenitors, especially 
during the night, which has been associated with the 
levels of melatonin receptors and BDNF in the SGZ. 
These cellular changes can be highly relevant, since 
current rhythms of life have motivated changes in pop-
ulational periods of sleep, which produce different 
systemic and cognitive alterations, such as memory 
acquisition and retention, which are associated with 
hippocampal neurogenesis. 
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